Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros













Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4171, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234116

RESUMEN

Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Saxitoxina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Células CHO , Células Cultivadas , Cuerpo Calloso/citología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Cricetulus , Embrión de Mamíferos , Femenino , Hipocampo/citología , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Técnicas de Placa-Clamp , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saxitoxina/análogos & derivados , Saxitoxina/efectos de la radiación , Análisis de la Célula Individual , Análisis Espacio-Temporal , Rayos Ultravioleta , Bloqueadores del Canal de Sodio Activado por Voltaje/efectos de la radiación
2.
Mar Drugs ; 18(6)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471037

RESUMEN

(1) Background: Neosaxitoxin (NeoSTX) has been used as a local anesthetic, but its anti-inflammatory effects have not been well defined. In the present study, we investigate the effects of NeoSTX on lipopolysaccharide (LPS)-activated macrophages. (2) Methods: Raw 264.7 and equine PBMC cells were incubated with or without 100 ng/mL LPS in the presence or absence of NeoSTX (1µM). The expression of inflammatory mediators was assessed: nitric oxide (NO) content using the Griess assay, TNF-α content using the ELISA assay, and mRNA of inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) using a real-time polymerase chain reaction. (3) Results: NeoSTX (1 µM) significantly inhibited the release of NO, TNF-α, and expression of iNOS, IL-1ß, and TNF-α in LPS-activated macrophages of both species studied. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by NeoSTX. Additionally, NeoSTX deactivated polarized macrophages to M1 by LPS without compromising its polarization towards M2. (4) Conclusions: NeoSTX inhibits LPS-induced release of inflammatory mediators from macrophages, and these effects may be mediated by the blockade of voltage-gated sodium channels (VGSC).


Asunto(s)
Mediadores de Inflamación/farmacología , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Saxitoxina/análogos & derivados , Animales , Humanos , Lipopolisacáridos , Ratones , Células RAW 264.7/efectos de los fármacos , Saxitoxina/farmacología
3.
ACS Chem Biol ; 15(3): 626-631, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32058687

RESUMEN

Secondary metabolites are assembled by enzymes that often perform reactions with high selectivity and specificity. Many of these enzymes also tolerate variations in substrate structure, exhibiting promiscuity that enables various applications of a given biocatalyst. However, initial enzyme characterization studies frequently do not explore beyond the native substrates. This limited assessment of substrate scope contributes to the difficulty of identifying appropriate enzymes for specific synthetic applications. Here, we report the natural function of cyanobacterial SxtG, an amidinotransferase involved in the biosynthesis of paralytic shellfish toxins, and demonstrate its ability to modify a breadth of non-native substrates. In addition, we report the first X-ray crystal structure of SxtG, which provides rationale for this enzyme's substrate scope. Taken together, these data confirm the function of SxtG and exemplify its potential utility in biocatalytic synthesis.


Asunto(s)
Amidinotransferasas/química , Toxinas Bacterianas/química , Venenos/química , Saxitoxina/química , Amidinotransferasas/genética , Amidinotransferasas/farmacología , Secuencia de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacología , Biocatálisis , Cianobacterias/enzimología , Cianobacterias/genética , Regulación de la Expresión Génica , Modelos Moleculares , Venenos/farmacología , Conformación Proteica , Saxitoxina/genética , Saxitoxina/farmacología , Saxitoxina/toxicidad , Mariscos , Especificidad por Sustrato
4.
Chemosphere ; 238: 124661, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31472350

RESUMEN

Toxicities of the marine algae Alexandrium minutum and its excreted gonyautoxins (GTXs) to the marine crustacean Artemia salina were investigated. Mortality was observed for neither larvae nor adult A. salina exposed to A. minutum at a density of 5000 cells/mL or 0.5 µM GTX2/3. After exposure, the full transcriptome of adult A. salina was assembled and functionally annotated. A total of 599,286 transcripts were obtained, which were clustered into 515,196 unigenes. Results of the transcriptional effect level index revealed that direct exposure to the toxic algae A. minutum caused greater alterations in the transcriptome than did exposure to the extracellular product GTX2/3. Mechanisms of effects were different between exposure of A. salina to A. minutum cells or GTX2/3. Exposure to A. minutum modulated formation of the ribonucleoprotein complex and metabolism of amino acids and lipids in A. salina. Exposure to GTX2/3 exposure inhibited expression of genes related to metabolism of chitin, which might result in disruption of molting process or disturbed sheath morphogenesis. Overall, effects on transcription observed in this study represent the first report based on application of next generation sequencing techniques to investigate the transcriptomic response of A. salina exposed to an environmentally realistic level of A. minutum or GTX2/3.


Asunto(s)
Artemia/genética , Saxitoxina/análogos & derivados , Transcriptoma/efectos de los fármacos , Animales , Artemia/fisiología , Quitina/genética , Quitina/metabolismo , Dinoflagelados/citología , Dinoflagelados/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Saxitoxina/farmacología , Saxitoxina/toxicidad
5.
Chemistry ; 26(9): 2025-2033, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31769085

RESUMEN

A novel series of C12-keto-type saxitoxin (STX) derivatives bearing an unusual nonhydrated form of the ketone at C12 has been synthesized, and their NaV -inhibitory activity has been evaluated in a cell-based assay as well as whole-cell patch-clamp recording. Among these compounds, 11-benzylidene STX (3 a) showed potent inhibitory activity against neuroblastoma Neuro 2A in both cell-based and electrophysiological analyses, with EC50 and IC50 values of 8.5 and 30.7 nm, respectively. Interestingly, the compound showed potent inhibitory activity against tetrodotoxin-resistant subtype of NaV 1.5, with an IC50 value of 94.1 nm. Derivatives 3 a-d and 3 f showed low recovery rates from NaV 1.2 subtype (ca 45-79 %) compared to natural dcSTX (2), strongly suggesting an irreversible mode of interaction. We propose an interaction model for the C12-keto derivatives with NaV in which the enone moiety in the STX derivatives 3 works as Michael acceptor for the carboxylate of Asp1717 .


Asunto(s)
Saxitoxina/química , Bloqueadores de los Canales de Sodio/síntesis química , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Técnicas de Placa-Clamp , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Teoría Cuántica , Saxitoxina/metabolismo , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/química , Tetrodotoxina/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
6.
Chemosphere ; 218: 93-103, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30469008

RESUMEN

Cyanoprokaryotes (Cyanobacteria/Cyanophyta) are ancient photosynthetic prokaryotic organisms with cosmopolitan distribution. They are producers of a number of biologically active substances with antitumor and antifungal activity, vitamins, antibiotics, algaecides, insecticides, repellents, hormones, immunosuppressants and toxins. So far, the cyanobacterium Fischerella major Gomont has not been studied regarding its impact on the environment and human health. In this study, the cytotoxic, antioxidant and antitumor activities of four extracts prepared from Fischerella major were evaluated in vitro. In addition, the total phenolic content and the potential for production of cyanotoxins were also analyzed. The conducted GC/MS analysis identified 45 compounds with different chemical nature and biological activity. Presence of microcystins and saxitoxins was detected in all Fischerella major extracts. In vitro testing on cell cultures showed a significant concentration- and time-dependent cytotoxic effect on all cell lines (HeLa, SK-Hep-1 and FL) treated at three exposure times (24, 48 and 72 h) with four extracts. A selective antitumor effect was not observed. This is the first study demonstrating biological activity of extracts from Fischerella major, which makes it an interesting subject for further research, including environmental risk assessments (as producer of cyanotoxins) or as a potential source of pharmaceuticals.


Asunto(s)
Antioxidantes/farmacología , Cianobacterias/química , Antioxidantes/análisis , Toxinas Bacterianas/farmacología , Línea Celular , Cianobacterias/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Humanos , Microcistinas/farmacología , Medición de Riesgo , Saxitoxina/farmacología
7.
Anal Sci ; 34(8): 893-900, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30101883

RESUMEN

Okadaic acid (OA) and saxitoxin (STX) are typical toxins of diarrhetic shellfish poisoning (DSP) and paralytic shellfish poisoning (PSP), respectively, which are highly toxic marine toxins threatening human health and environmental safety. OA is a potent inhibitor of serine/threonine protein phosphatases that can cause cellular death, while STX is an inhibitor of sodium channel that can lead to neurological damage. In this work, a dual functional cardiomyocyte-based biosensor was proposed to detect DSP and PSP toxins by monitoring the viability and electrophysiology of cardiomyocytes. The results showed that the viability of cardiomyocytes was sensitive to the OA and STX, resulting in significant changes of the electrophysiological properties, including amplitude, firing rate and duration of the extracellular field potential (EFP). The detection limits of the hybrid-biosensor are as low as 7.16 ng/mL for OA and 5.19 ng/mL for STX. In summary, all of the results indicate that the dual functional cardiomyocyte-based hybrid-biosensor will be a promising and utility tool for shellfish toxin detection.


Asunto(s)
Técnicas Biosensibles , Miocitos Cardíacos/metabolismo , Ácido Ocadaico/análisis , Saxitoxina/análisis , Intoxicación por Mariscos/diagnóstico , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Miocitos Cardíacos/citología , Ácido Ocadaico/farmacología , Ratas , Ratas Sprague-Dawley , Saxitoxina/farmacología , Mariscos
8.
J Helminthol ; 92(2): 244-249, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28349851

RESUMEN

Cylindrospermopsis raciborskii (Woloszynska) is a photosynthetic cyanobacterium that can produce cytotoxic (cylindrospermopsin) and neurotoxic cyanotoxins (saxitoxins). In Brazil the strains of C. raciborskii are reported to produce only saxitoxins (STX) and their effect on fish parasites has not been tested to date. The fish Poecilia vivipara Bloch and Schneider is a common host for the trematode Pygidiopsis macrostomum Travassos off the coast of Rio de Janeiro, and this fish-parasite interaction is a model for behavioural and ecotoxicological studies. The aim of this work was to evaluate the motility of metacercariae of P. macrostomum from P. vivipara exposed to 40 mg l-1 and 400 mg l-1 of crude lyophilized extract of the cyanobacterium C. raciborskii (CYRF-01) for 48 h. The fish were separated into groups of ten individuals and, after exposure, five fish from each group were dissected for counting and checking the motility of metacercariae. The other five fish were dissected after 48 h in clean water. The detection and quantification of STX in the solutions of cyanobacteria, and the gills and guts of fish, were performed by an enzyme-linked immunosorbent assay. The crude extract of C. raciborskii caused temporary paralysis in metacercariae of P. macrostomum after exposure of fish to both concentrations, and the motility recovered after the fish were kept for 48 h in clean water. STX was detected in the guts and gills of all fish analysed, suggesting that this toxin is involved in the paralysis of metacercariae. This is the first report on the action of neurotoxins in metacercariae of fish.


Asunto(s)
Cylindrospermopsis/química , Metacercarias/efectos de los fármacos , Saxitoxina/toxicidad , Extractos de Tejidos/toxicidad , Trematodos/efectos de los fármacos , Infecciones por Trematodos/parasitología , Animales , Interacciones Huésped-Parásitos/efectos de los fármacos , Movimiento/efectos de los fármacos , Neurotoxinas/farmacología , Neurotoxinas/toxicidad , Poecilia/parasitología , Saxitoxina/farmacología , Extractos de Tejidos/química , Extractos de Tejidos/farmacología , Trematodos/fisiología
9.
Mar Drugs ; 15(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027912

RESUMEN

Guanidinium toxins, such as saxitoxin (STX), tetrodotoxin (TTX) and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV). Members of the STX group, known collectively as paralytic shellfish toxins (PSTs), are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards development of pharmaceuticals and therapeutic applications.


Asunto(s)
Guanidina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Cianobacterias/metabolismo , Dinoflagelados/metabolismo , Guanidina/química , Humanos , Saxitoxina/química , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/química , Tetrodotoxina/química , Tetrodotoxina/farmacología , Toxinas Biológicas/química , Toxinas Biológicas/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(21): 5856-61, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162340

RESUMEN

Improper function of voltage-gated sodium channels (NaVs), obligatory membrane proteins for bioelectrical signaling, has been linked to a number of human pathologies. Small-molecule agents that target NaVs hold considerable promise for treatment of chronic disease. Absent a comprehensive understanding of channel structure, the challenge of designing selective agents to modulate the activity of NaV subtypes is formidable. We have endeavored to gain insight into the 3D architecture of the outer vestibule of NaV through a systematic structure-activity relationship (SAR) study involving the bis-guanidinium toxin saxitoxin (STX), modified saxitoxins, and protein mutagenesis. Mutant cycle analysis has led to the identification of an acetylated variant of STX with unprecedented, low-nanomolar affinity for human NaV1.7 (hNaV1.7), a channel subtype that has been implicated in pain perception. A revised toxin-receptor binding model is presented, which is consistent with the large body of SAR data that we have obtained. This new model is expected to facilitate subsequent efforts to design isoform-selective NaV inhibitors.


Asunto(s)
Proteínas Musculares/química , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Proteínas Recombinantes/química , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/química , Animales , Sitios de Unión , Células CHO , Cricetulus , Diseño de Fármacos , Expresión Génica , Células HEK293 , Humanos , Cinética , Simulación del Acoplamiento Molecular , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saxitoxina/química , Bloqueadores de los Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Tetrodotoxina/química , Tetrodotoxina/farmacología
11.
J Am Chem Soc ; 138(18): 5994-6001, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27138488

RESUMEN

The paralytic shellfish poisons are a collection of guanidine-containing natural products that are biosynthesized by prokaryote and eukaryote marine organisms. These compounds bind and inhibit isoforms of the mammalian voltage-gated Na(+) ion channel at concentrations ranging from 10(-11) to 10(-5) M. Here, we describe the de novo synthesis of three paralytic shellfish poisons, gonyautoxin 2, gonyautoxin 3, and 11,11-dihydroxysaxitoxin. Key steps include a diastereoselective Pictet-Spengler reaction and an intramolecular amination of an N-guanidyl pyrrole by a sulfonyl guanidine. The IC50's of GTX 2, GTX 3, and 11,11-dhSTX have been measured against rat NaV1.4, and are found to be 22 nM, 15 nM, and 2.2 µM, respectively.


Asunto(s)
Toxinas Marinas/síntesis química , Saxitoxina/análogos & derivados , Saxitoxina/síntesis química , Aminas/química , Animales , Ciclización , Toxinas Marinas/farmacología , Proteínas Musculares/antagonistas & inhibidores , Pirroles/química , Ratas , Saxitoxina/farmacología , Mariscos , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio , Estereoisomerismo
12.
Behav Brain Res ; 296: 70-77, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320738

RESUMEN

A growing body of evidence suggests that learned fear may be related to the function of the interoceptive insular cortex. Using an auditory fear conditioning paradigm in rats, we show that the inactivation of the posterior insular cortex (pIC), the target of the interoceptive thalamus, prior to training produced a marked reduction in fear expression tested 24h later. Accordingly, post-training anisomycin infused immediately, but not 6h after, also reduced fear expression tested the following day, supporting a role for the pIC in consolidation of fear memory. The long-term (ca. a week) and reversible inactivation of the pIC with the sodium channel blocker neosaxitoxin, immediately after fear memory reactivation induced a progressive decrease in the behavioral expression of conditioned fear. In turn, we observed that fear memory reactivation is accompanied by an enhanced expression of Fos and Zif268, early genes involved in neural activity and plasticity. Taken together these data indicate that the pIC is involved in the regulation of fear memories.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Interocepción/fisiología , Memoria/fisiología , Animales , Anisomicina/farmacología , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Inhibidores Enzimáticos/farmacología , Miedo/efectos de los fármacos , Genes fos/fisiología , Interocepción/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Saxitoxina/análogos & derivados , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tálamo
13.
Int J Mol Sci ; 16(7): 15235-50, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26154765

RESUMEN

Saxitoxin (STX) is a neurotoxin produced by dinoflagellates in diverse species, such as Alexandrium spp., and it causes paralytic shellfish poisoning (PSP) in humans after the ingestion of contaminated shellfish. Recent studies have suggested that the immune functions of bivalves could be affected by harmful algae and/or by their toxins. Herein, hemocytes are the main effector cells of the immune cellular response. In this study, we evaluated the response of hemocytes from the mussel Mytilus chilensis to STX exposure in a primary culture. Cell cultures were characterized according to size and complexity, while reactive oxygen species (ROS) production was evaluated using a dichlorofluorescein diacetate (DCFH-DA) assay. Finally, phagocytic activity was measured using both flow cytometry and fluorescence microscopy assays. Additionally, gene transcription of candidate genes was evaluated by qPCR assays. The results evidenced that exposures to different concentrations of STX (1-100 nM) for 24 h did not affect cell viability, as determined by an MTT assay. However, when hemocytes were exposed for 4 or 16 h to STX (1-100 nM), there was a modulation of phagocytic activity and ROS production. Moreover, hemocytes exposed to 100 nM of STX for 4 or 16 h showed a significant increase in transcript levels of genes encoding for antioxidant enzymes (SOD, CAT), mitochondrial enzymes (COI, COIII, CYTB, ATP6, ND1) and ion channels (K+, Ca2+). Meanwhile, C-type lectin and toll-like receptor genes revealed a bi-phase transcriptional response after 16 and 24-48 h of exposure to STX. These results suggest that STX can negatively affect the immunocompetence of M. chilensis hemocytes, which were capable of responding to STX exposure in vitro by increasing the mRNA levels of antioxidant enzymes.


Asunto(s)
Hemocitos/efectos de los fármacos , Mytilus/efectos de los fármacos , Fagocitosis , Venenos/farmacología , Saxitoxina/farmacología , Transcriptoma , Animales , Hemocitos/inmunología , Hemocitos/metabolismo , Mytilus/inmunología , Mytilus/metabolismo , Estrés Oxidativo , Venenos/toxicidad , Saxitoxina/toxicidad , Transcripción Genética
14.
Invest Ophthalmol Vis Sci ; 56(6): 3820-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26066750

RESUMEN

PURPOSE: Amino-amide or amino-ester local anesthetics, which are currently used for topical ocular anesthesia, are short acting and may delay corneal healing with long-term use. In contrast, site 1 sodium channel blockers (S1SCBs) are potent local anesthetics with minimal adverse tissue reaction. In this study, we examined topical local anesthesia with two S1SCBs, tetrodotoxin (TTX) or saxitoxin (STX) individually or in combination with α2-adrenergic receptor agonists (dexmedetomidine or clonidine), and compared them with the amino-ester ocular anesthetic proparacaine. The effect of test solutions on corneal healing was also studied. METHODS: Solutions of TTX ± dexmedetomidine, TTX ± clonidine, STX ± dexmedetomidine, dexmedetomidine, or proparacaine were applied to the rat cornea. Tactile sensitivity was measured by recording the blink response to probing of the cornea with a Cochet-Bonnet esthesiometer. The duration of corneal anesthesia was calculated. Cytotoxicity from anesthetic solutions was measured in vitro. The effect on corneal healing was measured in vivo after corneal debridement followed by repeated drug administration. RESULTS: Addition of dexmedetomidine to TTX or STX significantly prolonged corneal anesthesia beyond that of either drug alone, whereas clonidine did not. Tetrodotoxin or STX coadministered with dexmedetomidine resulted in two to three times longer corneal anesthesia than did proparacaine. S1SCB-dexmedetomidine formulations were not cytotoxic. Corneal healing was not delayed significantly by any of the test solutions. CONCLUSIONS: Coadministration of S1SCBs with dexmedetomidine provided prolonged corneal anesthesia without delaying corneal wound healing. Such formulations may be useful for the management of acute surgical and nonsurgical corneal pain.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Anestesia Local/métodos , Anestésicos Combinados/farmacología , Clonidina/farmacología , Córnea/efectos de los fármacos , Dexmedetomidina/farmacología , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Animales , Células Cultivadas , Córnea/citología , Masculino , Ratas , Ratas Sprague-Dawley
15.
Org Biomol Chem ; 11(38): 6642-9, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23989458

RESUMEN

Here, we describe the synthesis of the first C13-N-substituted STX derivatives 4, 5, and 6 bearing a guanidine, a urea group, and an acetamide, respectively, via the fully protected saxitoxinol derivative 8. These compounds are of interest because a previous docking study of saxitoxin (STX) with voltage-gated sodium channels (NaVCh) suggested that the C13 carbamoyl group of STX interacts with residue E403 in the pore region of NaVCh. In a cell-based assay with Neuro-2a cells, the NaVCh-inhibitory activities of 4 and 5 were more than 20- to 50-fold weaker than that of decarbamoyl-STX (3), which is 10-fold less potent than STX. On the other hand, 6 was 1000 times less potent than 3. The electrostatic analysis of C13 in STX and its analogs 4-6 using EON calculations suggested that the NaVCh-inhibitory activity of these derivatives is influenced by both the hydrophilicity and the charge balance of the substituent at C13.


Asunto(s)
Guanidina/química , Saxitoxina/síntesis química , Saxitoxina/farmacología , Urea/química , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Saxitoxina/química , Relación Estructura-Actividad
16.
J Am Chem Soc ; 135(29): 10582-5, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23855513

RESUMEN

(+)-Saxitoxin, a naturally occurring guanidinium poison, functions as a potent, selective, and reversible inhibitor of voltage-gated sodium ion channels (NaVs). Modified forms of this toxin bearing cysteine-reactive maleimide groups are available through total synthesis and are found to irreversibly inhibit sodium ion conductance in recombinantly expressed wild-type sodium channels and in hippocampal nerve cells. Our findings support a mechanism for covalent protein modification in which toxin binding to the channel pore precedes maleimide alkylation of a nucleophilic amino acid. Second-generation maleimide-toxin conjugates, which include bioorthogonal reactive groups, are also found to block channel function irreversibly; such compounds have potential as reagents for selective labeling of NaVs for live cell imaging and/or proteomics experiments.


Asunto(s)
Maleimidas/química , Maleimidas/farmacología , Saxitoxina/química , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Animales , Células CHO , Cricetulus , Humanos , Modelos Moleculares , Neuronas/efectos de los fármacos , Ratas , Canales de Sodio/metabolismo
17.
Mar Drugs ; 11(4): 991-1018, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23535394

RESUMEN

Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin's ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s) PSTs may serve for phytoplankton species that produce them are also discussed.


Asunto(s)
Toxinas Marinas/toxicidad , Saxitoxina/toxicidad , Intoxicación por Mariscos/etiología , Animales , Canales de Calcio/metabolismo , Humanos , Toxinas Marinas/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Saxitoxina/farmacología , Intoxicación por Mariscos/fisiopatología , Canales de Sodio Activados por Voltaje/metabolismo
18.
J Gen Physiol ; 140(4): 435-54, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23008436

RESUMEN

Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca(2+) permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca(2+) or Na(+) ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca(2+) permeability, suggesting that ion-toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.


Asunto(s)
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación Missense , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/química , Estructura Terciaria de Proteína , Ratas , Sodio/metabolismo , Canales de Sodio/química , Electricidad Estática
19.
Chem Biol ; 19(7): 902-12, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22840778

RESUMEN

A desire to better understand the role of voltage-gated sodium channels (Na(V)s) in signal conduction and their dysregulation in specific disease states motivates the development of high precision tools for their study. Nature has evolved a collection of small molecule agents, including the shellfish poison (+)-saxitoxin, that bind to the extracellular pore of select Na(V) isoforms. As described in this report, de novo chemical synthesis has enabled the preparation of fluorescently labeled derivatives of (+)-saxitoxin, STX-Cy5, and STX-DCDHF, which display reversible binding to Na(V)s in live cells. Electrophysiology and confocal fluorescence microscopy studies confirm that these STX-based dyes function as potent and selective Na(V) labels. The utility of these probes is underscored in single-molecule and super-resolution imaging experiments, which reveal Na(V) distributions well beyond the optical diffraction limit in subcellular features such as neuritic spines and filopodia.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/farmacología , Saxitoxina/farmacología , Canales de Sodio/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Electrofisiología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Microscopía Confocal , Modelos Moleculares , Estructura Molecular , Células PC12 , Ratas , Saxitoxina/análogos & derivados , Saxitoxina/química , Canales de Sodio/química , Relación Estructura-Actividad
20.
Hum Mol Genet ; 21(16): 3655-67, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22641814

RESUMEN

Spontaneous neural activity promotes axon growth in many types of developing neurons, including motoneurons. In motoneurons from a mouse model of spinal muscular atrophy (SMA), defects in axonal growth and presynaptic function correlate with a reduced frequency of spontaneous Ca(2+) transients in axons which are mediated by N-type Ca(2+) channels. To characterize the mechanisms that initiate spontaneous Ca(2+) transients, we investigated the role of voltage-gated sodium channels (VGSCs). We found that low concentrations of the VGSC inhibitors tetrodotoxin (TTX) and saxitoxin (STX) reduce the rate of axon growth in cultured embryonic mouse motoneurons without affecting their survival. STX was 5- to 10-fold more potent than TTX and Ca(2+) imaging confirmed that low concentrations of STX strongly reduce the frequency of spontaneous Ca(2+) transients in somatic and axonal regions. These findings suggest that the Na(V)1.9, a VGSC that opens at low thresholds, could act upstream of spontaneous Ca(2+) transients. qPCR from cultured and laser-microdissected spinal cord motoneurons revealed abundant expression of Na(V)1.9. Na(V)1.9 protein is preferentially localized in axons and growth cones. Suppression of Na(V)1.9 expression reduced axon elongation. Motoneurons from Na(V)1.9(-/-) mice showed the reduced axon growth in combination with reduced spontaneous Ca(2+) transients in the soma and axon terminals. Thus, Na(V)1.9 function appears to be essential for activity-dependent axon growth, acting upstream of spontaneous Ca(2+) elevation through voltage-gated calcium channels (VGCCs). Na(V)1.9 activation could therefore serve as a target for modulating axonal regeneration in motoneuron diseases such as SMA in which presynaptic activity of VGCCs is reduced.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Neuronas Motoras/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Conos de Crecimiento/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular Espinal/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/genética , Conejos , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Médula Espinal/citología , Médula Espinal/metabolismo , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA